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Objectively assessing the performance of a model and deriving model parameter values

from observations are critical and challenging in landscape to regional modeling. In this

paper, we applied a nonlinear inversion technique to calibrate the ecosystem model CEN-

TURY against carbon (C) and nitrogen (N) stock measurements collected from 39 mature

tropical forest sites in seven life zones in Costa Rica. Net primary productivity from the

Moderate-Resolution Imaging Spectroradiometer (MODIS), C and N stocks in aboveground

live biomass, litter, coarse woody debris (CWD), and in soils were used to calibrate the

model. To investigate the resolution of available observations on the number of adjustable

parameters, inversion was performed using nine setups of adjustable parameters. Statistics

including observation sensitivity, parameter correlation coefficient, parameter sensitivity,

and parameter confidence limits were used to evaluate the information content of obser-

vations, resolution of model parameters, and overall model performance. Results indicated

that soil organic carbon content, soil nitrogen content, and total aboveground biomass car-

bon had the highest information contents, while measurements of carbon in litter and

nitrogen in CWD contributed little to the parameter estimation processes. The available

information could resolve the values of 2–4 parameters. Adjusting just one parameter

resulted in under-fitting and unacceptable model performance, while adjusting five param-

eters simultaneously led to over-fitting. Results further indicated that the MODIS NPP values

were compressed as compared with the spatial variability of net primary production (NPP)
values inferred from inverse modeling. Using inverse modeling to infer NPP and other sen-

sitive model parameters from C and N stock observations provides an opportunity to utilize

data collected by nationa

in the carbon cycle and g

algorithms.
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1. Introduction

Numerical models are frequently being used to character-
ize and predict landscape processes and consequences. Most
landscape modeling efforts rely on deploying classic plot-scale
models in space using various spatial databases as input data
and driving forces (Reiners et al., 2002; Liu et al., 2004a,b). One
of the main challenges of this approach is the difficulty in
quantifying the spatial variability of model parameters. Con-
ventionally, one or multiple lookup tables are often used to
prescribe the variability of some sensitive parameters across
various strata (usually by land cover, plant functional type,
or biome) in the study area (Parton et al., 1987). In this case,
each stratum will have a unique set of parameter values.
Although this approach deals with parameter variability to a
certain degree, it ignores the impacts of additional environ-
mental factors on parameter variability. For example, some
model parameters (e.g., soil hydraulic conductivity and gross
primary productivity) are often different among different sites
of the same ecosystem types. Because of the variability of
parameter values, model calibration is often needed to find the
optimal set of parameter values for any given site. For model-
ing processes over large areas, it is ideal that spatially explicit
parameter surfaces or fields are available or can be generated.
Otherwise, the simulated spatial patterns might be flawed or
even incorrect.

Generating parameter surfaces requires the following key
elements:

1. Field measurements collected from many sites in the study
area.

2. A consistent and objective calibration procedure to derive
optimal model parameter values from these field measure-
ments.

3. Analysis and quantification of the relationship between
parameter values and environmental variables such as pre-
cipitation and temperature.

4. Mapping parameter surfaces using the relationships estab-
lished in previous steps.

In this paper, we will concentrate on the second and the
third step, which is most challenging among all these steps.
Conventional calibration is done manually, which can be very
time-consuming, subjective, and challenging, if multiple con-
straints need to be considered and satisfied at the same time
and the model is to be calibrated on many points in space. Fur-
thermore, the optimal set of parameter values usually could
not be reached using the manual approach. To overcome these
shortcomings, we in this paper applied a nonlinear inversion
technique to calibrate the ecosystem model CENTURY against
carbon stock measurements collected from 39 mature tropi-
cal forest sites in seven life zones in Costa Rica. The number
of adjustable parameters that can be resolved by field mea-
surements will be discussed. The usefulness of the nonlinear

inversion technique in inferring net primary production (NPP)
will be presented and the estimated NPP will be compared with
MODIS NPP. The quantitative relationships between parame-
ter values and site factors will be explored using piece-wise
regression tree techniques.
2 1 9 ( 2 0 0 8 ) 327–341

2. Methods

2.1. Study area and field data collection

As a part of an effort to generate supply functions of carbon
sequestration in Costa Rica (Pfaff et al., 2000; Kerr et al., 2003),
carbon (C) and nitrogen (N) stocks at the stand level were esti-
mated at 39 mature forest sites spread in six Holdridge life
zones (Table 1) in 2000 and 2001 (Fig. 1). The annual precipita-
tion varies from about 1000 to 6000 mm, and annual mean air
temperature ranges from 10 to 22 ◦C across these sites and life
zones.

Diameters at breast height of live and dead trees were mea-
sured for all the trees in the 100 m × 100 m plots. C stocks in
aboveground live biomass and coarse woody debris were then
estimated using allometric equations that relate diameter at
breast height (DBH) of a tree to its carbon content (Hughes
et al., 2002). Carbon stocks on forest floor and in soil were
also measured. C and N ratios of aboveground biomass, coarse
woody debris, litter, and soils were measured and used to
estimate N stocks in these compartments. Soil samples were
taken to measure physical and chemical properties including
bulk density and texture. Detailed description on field mea-
surements and data processing can be found in Hughes et al.
(2002).

2.2. Net primary production and climate data

Annual net primary productions (NPP) at these sites were
derived from the Moderate-Resolution Imaging Spectrora-
diometer (MODIS) (http://modis.gsfc.nasa.gov/). MODIS NPP
data were at 1 km resolution. In order to minimize the errors
introduced by spatial registration of the field plots and fre-
quent cloud cover in Costa Rica, the maximum annual NPP
within a 5 km × 5 km window was extracted from the MODIS
NPP surface in 2001. This maximum NPP was assumed to rep-
resent the annual NPP of the mature forest site and used in
model calibration.

Monthly precipitation, maximum, and minimum temper-
atures are required to run the CENTURY model. Few field sites
had weather stations nearby. Surfaces of the long-term means
of these climate variables were generated using Kriging and
data collected from the network of weather stations in Costa
Rica (Waylen et al., 1996). Climate data for each of the study
sites were extracted from these surfaces according to their
geographic locations.

2.3. Estimation of mortality rate

Mortality is an important parameter in all ecosystem mod-
els including CENTURY because its magnitude can affect the
levels of C and N stocks and fluxes of an ecosystem. To
study and simulate the spatial variation of C and N dynamics
across life zones, it is necessary to understand and quan-
tify how mortality changes across life zones and which site

characteristics are most likely to affect the mortality of the
tropical forests. No mortality observations were available
for the study sites because reliable estimates require long-
term observations and beyond the scope of our study. In

http://modis.gsfc.nasa.gov/
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Table 1 – Study sites and their associated Holdridge life zones: Tropical Dry Forest (T-df), Lower Montane Rain Forest
(LM-rf), Tropical Moist Forest (T-mf), Premontane Rain Forest (P-rf), Premontane Wet Forest (P-wf), and Tropical Wet Forest
(T-wf)

Site ID Site name Life zone code Site ID Site name Life zone code

1 Meseta T-df 21 Kraven P-rf
2 Pacifica1 T-df 22 Saino P-rf
3 Pacifica2 T-df 24 OldRoad P-wf
4 Pacifica3 T-df 25 Mary P-wf
5 Roedores T-df 26 Las Alturas P-wf
7 Bellbird LM-rf 27 Rodeo3 P-wf
8 Pittier LM-rf 29 SSO-LaSelva P-wf
9 Valle LM-rf 30 Holdridge P-wf

10 Nuboso LM-rf 31 La Muerte P-wf
11 Trinidad LM-rf 33 Magsasay T-wf
13 Carara1 T-mf 34 Gallo Pinto T-wf
14 Carara2 T-mf 35 La Bonita T-wf
15 Jobada T-mf 36 Maria Luisa T-wf
16 Killer T-mf 37 Osa1 T-wf

o
i
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b
B
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17 Puntas Blancas T-mf
19 Penas Blancas P-rf
20 Miranda P-rf

rder to understand the spatial variation of mortality and
ts relationship to site conditions, we conducted a litera-
ure review on previous mortality studies in tropical forests.
esults indicated that mortality was not strongly affected
y slope (Herwitz and Young, 1994; Matelson et al., 1995;
ellingham and Tanner, 2000), elevation (Carey et al., 1994;
atelson et al., 1995), wind and soil type (Matelson et al.,

995). Drought, on the other hand, was found to have some

ffect on mortality with smaller trees and shrubs affected
ore intensely by drought than the larger class of trees and

hrubs (Condit et al., 1995). Mortality is affected by tree species
Lang and Knight, 1983; Korning and Balslev, 1994) and tree

Fig. 1 – Field sites for measuring C and N s
38 Osa2 T-wf
39 Osa3 T-wf

size (Liberman et al., 1985; Liberman and Liberman, 1987;
Korning and Balslev, 1994). The impacts of tree species and
size on mortality are demonstrated within individual stands.
Their impacts on mature forests at the stand level are not
clear.

Because no apparent quantitative relationships were found
between mortality rates and site conditions, it is not possible
for us to assign site-specific mortality rates to these study sites

according to their biotic and abiotic conditions. In this study,
the mortality rates were assumed to be the same for all the
sites with the average rate of 0.173% biomass y−1 derived from
the literature above.

tocks in mature forests in Costa Rica.
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Table 2 – Observed variables that have been used for
model calibration and testing

Observation code Definition

NPP Net primary production
(g C y−1)

ABGC Carbon in aboveground
biomass (g C m−2)

LITTERC Carbon in litter (g C m−2)
WOODC Carbon in dead wood (g C m−2)
SOMTC Soil organic carbon in the top

20 cm layer (g C m−2)
ABGN Nitrogen in aboveground

biomass (g N m−2)
LITTERN Nitrogen in litter (g N m−2)
WOODN Nitrogen in dead wood

(g N m−2)
SOMTN Nitrogen in the top 20 cm soil
330 e c o l o g i c a l m o d e l l

2.4. CENTURY model

The CENTURY model (version 4) was designed to simulate C, N,
P, and S cycles in various ecosystems including crops, pastures,
forests, and savannas worldwide (Parton et al., 1987; Schimel
et al., 1991, 1994; Pan et al., 1998; Liu et al., 1999; Reiners et
al., 2002). We have modified and applied the model to simu-
late the emissions of nitrogen trace gases from soils into the
atmosphere in the Atlantic lowlands of Costa Rica (Liu et al.,
1999, 2000; Reiners et al., 2002). The main input data of the
model include:

1. Climate data: monthly precipitation, monthly maximum
temperature, and monthly minimum temperature.

2. Soil data: bulk density, fractions of sand, silt, and clay, and
drainage conditions.

3. Biological data: major species or ecosystem type, C:N ratios
of plant tissues, mortality, and maximum gross primary
productivity.

4. Management practices and disturbances such as land use
activities and hurricanes.

Because we dealt with mature forests that had no visible
evidence of any disturbances in this study, management and
disturbances were not considered in model simulations.

2.5. Nonlinear inversion

2.5.1. Nonlinear inversion and PEST
The goal of nonlinear inversion is to derive a set of model
parameter values that minimize the least squares of the
weighted residuals (PEST, 2003):

˚ = min

m∑
i=1

[wi(y
′
i − yi)]

2 (1)

where wi is the weight of ith observation yi, y′
i

is the model
simulated value corresponding to the ith observation, and m is
the total number of observations. The observation data items
that were used at each site for nonlinear inversion are listed
in Table 2.

The optimization of (1) was accomplished using the soft-
ware PEST. PEST takes control of the CENTURY model and
runs it as many times as necessary to reach an optimal set of
parameter values. PEST calculates the mismatch between the
model output and the observation data and then determines
the best way, by adjusting the values of model parameters, to
correct the mismatch. This process is repeated until the objec-
tive function (1) is minimized. The corresponding final set of
parameter values are said to be optimal.

2.5.2. Modeling experiment design
What parameter values should be adjusted and what weights
should be assigned to different observations are important
issues in nonlinear inversion. Only a certain number of param-

eters can practically be resolved for a given set of observations
(Wang et al., 2001). In order to investigate the power of the
observations in resolving model parameters, nine separate
run batches of the PEST/Century model were preformed. A
layer (g N m−2)

run batch consisted of running the PEST-CENTURY setup sep-
arately at each of the 39 sites. A different set of adjustable,
tied, or fixed parameters was assigned to each of the batches,
and the combination of parameters for a particular batch was
consistent across sites. The combinations of the 11 param-
eters being adjustable, tied, or fixed in this study are listed
in Table 3. These parameters play important roles in carbon
cycle simulations in the CENTURY model. Parameters that
were adjustable or tied were of significance since their values
would be optimized based on the model and the observation
data. A parameter is tied with an adjustable parameter using
a multiplicative constant. All other parameters of the CEN-
TURY model that were not listed remained fixed in all model
runs.

Weights were assigned to these observations to reflect the
magnitudes of the values and the quality of the data (Table 4).
For example, because N content is at least 10 times lower than
the C content in both vegetation and soils, a weight of 10 or
larger would be needed for N values in order to make the con-
tribution of N residuals comparable to that of C residuals in
the objective function. Otherwise, the N residuals would be
too small numerically to play a role in the objective func-
tion as compared with the C residuals, although both kinds
of residuals are equally important in judging the success of
model calibration. The weights can also be used as an indica-
tor of confidence in data quality or the nature of the data. In
our study, we assigned a value of 0.3 as the weight of coarse
woody debris (CWD) because CWD measured at any given time
might not represent its long-term average, which is really what
the CENTURY simulates, because of the erratic nature of tree
mortality. Putting too much weight in CWD would force the
modeling system to run in a state that might be different from
reality. The weights for the observations were changed in dif-
ferent runs to investigate the importance of the observation
data on model inversion (Table 4).
2.5.3. Diagnostic and inferential statistics for inverse
modeling
Four issues need to be considered for estimating model
parameter values: sensitivity of parameters and observations,
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Table 3 – Combinations of 11 parameters being adjustable (V), tied (T), or fixed (F) for the nine model run batches

Parameter ID Model run batch Parameter definition

1 2 3 4 5 6 7 8 9

dec11 (a) V V V V F T(b) T(d) T(d) F Maximum surface structural
decomposition rate

dec4 (b) V V V V F V T(d) T(d) F Maximum decomposition rate of soil
organic matter with active turnover

dec5 (c) T(b) T(b) T(b) T(b) F T(b) T(d) T(d) F Maximum decomposition rate of soil
organic matter with slow turnover

prdx4 (d) V V V V V V V V V Maximum gross forest production
decw1 (e) V V V F F F F F F Maximum decomposition rate constant

for dead fine branch
decw2 (f) T(e) T(e) T(e) F F F F F F Maximum decomposition rate constant

for large wood
wooddr2 (g) V V F F F F F F F Monthly death rate fraction for fine roots
wooddr3 (h) T(g) T(g) F F F F F F F Monthly death rate fraction for fine

branches
wooddr4 (i) T(g) T(g) F F F F F F F Monthly death rate fraction for large

wood
wooddr5 (h) T(g) T(g) F F F F F F F Monthly death rate fraction for coarse

roots
teff2 (k) — — — — – — — — V Minimum temperature for vegetation

n
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The letter in parentheses is the ID of the variable that was tied with.

onuniqueness of parameter values, parameter uncertainty,
nd overall model fit. These issues can be addressed using the
iagnostic and inferential statistics described in the following
ubsections.

.5.3.1. Parameter sensitivity. High parameter sensitivity val-
es indicate that these parameters are likely to be easy to
stimate by inversion with the observations, while low val-
es are not. In other words, the available observations contain
ubstantial information about parameters with high sensitiv-
ty values, less information about those with low sensitivity
alues.

Since absolute composite sensitivities are not suitable for

arameters of different type and magnitude (PEST, 2003),
e used the relative composite sensitivities to compare the

ffects of different parameters on the parameter estimation
rocess. The relative composite sensitivity for a given model

Table 4 – Weights were assigned to observations to reflect the m

Parameter

1 2 3 4

NPP 10 10 1 1
abgc 1 1 1 1
litterc 1 1 1 1
woodc 1 0.3 0.3 0.3
somtc 1 1 1 1
abgn 10 10 10 10
littern 10 10 10 10
woodn 10 3 3 3
somtn 10 10 10 10

The weights were changed in different runs to investigate the importance
growth

parameter, si, is obtained by multiplying the parameter’s abso-
lute composite sensitivity by the value of the parameter:

si =

√
(JtQJ)

i,i

m
ˇi (2)

where J represents the Jacobian matrix, Q is the cofactor
matrix, ˇi is the value of the parameter, and m is the number
of observations that have non-zero weights (PEST, 2003). The
Jacobian matrix is made up of m rows and n (i.e., the num-
ber of adjustable parameters) columns. The elements in the
Jacobian matrix are the derivatives of the observations with
respect to the adjustable parameters. The cofactor matrix is

most often a diagonal matrix with the elements being the
squared observation weights. The relative composite sensi-
tivities are used during the parameter estimation process to
determine which parameters might be degrading the model

agnitudes of the values and the quality of the data

Model run ID

5 6 7 8 9

1 1 1 10 1
1 1 1 1 1
1 1 1 1 1
0.3 0.3 0.3 0.3 0.3
1 1 1 1 1

10 10 10 10 10
10 10 10 10 10
3 3 3 3 3

10 10 10 10 10

of the observation data on model inversion.
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performance because they lack sensitivity to model outcomes
(Poeter and Hill, 1998).

2.5.3.2. Observation sensitivity. The composite observation
sensitivity of observation ıj is defined as:

ıj =

√
{Q(JJT)}

j,j

n
(3)

Therefore, the composite observation sensitivity of observa-
tion j is the magnitude of jth row of the Jacobian matrix
multiplied by the weight of the observation, and then divided
by the number of adjustable parameters (PEST, 2003). It is thus
a measure of the sensitivity of the observation to all param-
eters in the parameter estimation process. High observation
sensitivity suggests high information content and therefore
contributes more to the parameter estimation process.

2.5.3.3. Parameter correlation coefficient matrix. Parameter
correlation coefficients suggest whether the estimated param-
eter values are likely to be unique. High correlation coefficients
between parameters are indicative of a high degree of
uncertainty (i.e., wide confidence intervals) in the parame-
ter estimation process. The parameter correlation coefficient
matrix is symmetric with one row and column for each of
the adjustable parameters. Fixed and tied parameters are not
included in the matrix. The elements of the correlation coef-
ficient matrix are calculated as

�ij = �ij√
�ii�jj

(4)

where �ij represents the element at the ith row and jth column
of the covariance matrix (PEST, 2003). The elements along the
diagonal of the correlation coefficient matrix are always 1. All
other elements in the matrix are between 1 and −1. Each of the
elements in the matrix represents the correlation between the
parameter in that row and that column. The closer the values
off the diagonal are to 1 or −1 the more correlated the two
parameters are, and the observations used in the inversion
are not likely to be able to uniquely resolve these parameters.

2.5.3.4. Parameter uncertainty. Parameter uncertainty can be
approximately quantified using linear confidence intervals
(Poeter and Hill, 1998):

ˇj ± t(f,1.0−˛/2)�j (5)

where ˇj and �j are the adjustable parameter value and its
associated standard deviation, respectively, and t(f,1.0−˛/2) is the
Student-t statistic for f degree of freedom and a significance
level of ˛.

Narrow intervals indicate greater precision. If the model
accurately represents the system, the intervals also suggest
the likely accuracy of the estimate. If the confidence interval
includes no realistic parameter values, the unrealistic param-

eter estimate is likely to suggest problems with the model or
observations. If the confidence interval includes unrealistic
parameter values, it is usually not clear whether there is a
problem with the model or the observations.
2 1 9 ( 2 0 0 8 ) 327–341

2.5.3.5. Goodness of overall model fit. Two methods were used
to assess the goodness of model fit across sites. We first
visually analyzed the patterns of the residuals. Good model
fit would produce small residuals that are close to zero. To
assess model fit more objectively, a linear regression between
observed and simulated values for each of the variables was
developed. A successful model fit would satisfy all the follow-
ing conditions:

1. The linear regression is significant at ˛ = 0.01.
2. The slope of the regression is not significantly different

from 1 at ˛ = 0.005.
3. The intercept of the regression is not significantly different

from 0 at ˛ = 0.005.

2.6. Modeling model parameters

The values of model parameters might vary with precipitation,
temperature, drainage condition, and other site characteris-
tics. It is important to understand and able to predict the
changes of model parameter values in space and time in
order to apply models to unobserved territories. Often, the
variability of parameter values can only be represented by
lookup tables due to limited understanding of the control-
ling factors. In this study, the rule-based data-mining tool
Cubist [http://www.rulequest.com/cubist-info.html] was used
to develop empirical models for the variable parameters from
the above inversed parameter values.

Both a single model and a committee model were created
for each parameter, and the better model was selected for
prediction. The committee approach created several single
models (i.e., a committee) for any given parameter, and the
predicted value of the parameter was given by the average
of the predicted values of all the single models in the com-
mittee. The independent variables for the Cubist piece-wise
regression were precipitation, minimum temperature, mean
temperature, maximum temperature, life zone, and elevation
at each site. In order to account for dependence of a parameter
on any other parameters, model parameters were included as
independent variables.

To select the best possible set of models for all the param-
eters, we have to consider the determination coefficients,
relative errors, and precedence of the models. Precedence
is important when two or more parameters are significantly
related. For example, if parameter A is correlated with param-
eter B and A can be better predicted without knowing B than
otherwise (e.g., judged by their determination coefficients and
relative errors), then A has a higher precedence than B, and B
should not be included in the model of A.

3. Results

3.1. Observation sensitivity

Observation sensitivities for all 9 run batches indicated sev-

eral patterns (Fig. 2). First, sensitivities of a given observation
within a given run batch varied 1–5 magnitudes across sites,
indicating that the information contained in an observation
varied from site to site. Second, the sensitivities of differ-

http://www.rulequest.com/cubist-info.html
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Fig. 2 – Observation sensitivities from 9 model run batches. The boundary of the box closest to zero indicates the 25th
percentile, a line within the box marks the median, and the boundary of the box farthest from zero indicates the 75th
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ercentile. Whiskers (error bars) above and below the box in

nt observations varied greatly and the medians differed
everal magnitudes. For all these nine run batches, SOMTC,
OMTN, and ABGC had the highest sensitivities, suggest-

ng they contained more information that contributed to the
etermination of the adjustable parameters than other obser-
ations. Meanwhile, LITTERN, WOODN, and LITTERC had the
owest sensitivities and contributed lesser to the parameter
stimation process than other variables. Third, observation
ensitivities varied among model run batches, reflecting the
mpacts of different combinations of adjustable parameters
r weights on inversion.

.2. Parameter sensitivity

he initial and final parameter sensitivities of the nine runs
re shown in Fig. 3. The initial and final parameter sensitivities
ere calculated using Eq. (2) at the beginning and end of the
ptimization processes (i.e., Eq. (1)). Although the final sensi-

ivity is more important, comparing these two sensitivities can
uggest how parameter sensitivities have changed during the
nversion process at individual sites and how these changes
ehave across sites. A consistent change pattern of parameter
te the 90th and 10th percentiles.

sensitivity across sites would suggest that observations had
a similar impact on resolving model parameters across these
sites. DEC11 was optimized in Run1 to Run4 (Fig. 3a–d and i–l).
It had the lowest sensitivity among all the optimized param-
eters except its final sensitivity in Run4 (Fig. 3l). This suggests
that DEC11 could not be resolved by the available field data
when the number of optimized parameters was more than
3. DECW1 had the second lowest sensitivity among all the
optimized parameters in Run1 and Run2 (Fig. 3e–h), although
its sensitivities were relatively high initially in Run2 (Fig. 3g).
Run3 further proved that the available field data contained
little information to determine DECW1.

Other parameters including DEC4, PRDX4, WOODDR2, and
TEFF2 had relatively high sensitivities, indicating that the field
observations contained more information about these param-
eters. These results indicated that the available field data
could resolve three parameters reasonably well at the same
time.
Fig. 3 also shows that parameter sensitivities varied among
sites and life zones. In all runs except Run7 and Run8 (which
were not successful, see Section 3.5), parameter sensitivities
were lower in tropical dry and moist life zones, likely indicat-
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opt
Fig. 3 – Initial and final parameter sensitivities of the

ing that field data collected in these two life zones contained
less information about these parameters than in other life
zones. This might also suggest that CENTURY model is more
applicable to other life zones. The variability of parameter sen-

sitivities among sites suggests that the available data resolved
optimized parameters differently. This seems hard to explain
because the number and meanings of observations were the
same for all the sites. This variability might reflect the adapt-
imized parameters for all model runs at the 39 sites.

ability of the model to different sets of field measurements via
adjusting these optimized parameters.

3.3. Parameter correlation coefficients
Fig. 4 shows the correlation coefficients between adjustable
parameters for all the model runs that had multiple adjustable
parameters. Run5, Run7, and Run8 had no correlation coef-
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Fig. 4 – Variability of parameter correlati

cient because only one parameter was adjustable during
ach of the runs. It can be seen from Fig. 4 that parameter
orrelation coefficients of the same two parameters varied
rom site to site and from run to run. The parameter cor-
elation coefficients of Run1 were similar to those of Run2
ith the highest correlation values between the following sets
f parameters: PRDX4 and WOODDR2, DEC4 and PRDX4, and
EC4 and WOODDR2. DEC11 had very low correlation coeffi-
ients with DEC4, PRDX4, and DECW1. DEC11 was negatively
orrelated with WOODDR2, which was the only consistently
egative correlation found among all the parameters during
ll model runs.

DEC11 became correlated with DEC4 and PRDX4 during
un3 and Run4 (Fig. 4(3) and (4)). DECW1 was not correlated
ith any other adjustable parameter (i.e., DEC11, DEC4, or

RDX4) in Run3. DEC4 and PRDX4 were correlated during Run3,
un4, and Run6.

Note that the some parameter correlation coefficients were
ery different from the normal in terms of their magnitudes
nd the directions (positive or negative) of correlation. For
xample, the correlation coefficient between DEC4 and PRDX4
ad only three negative values out of a total of 39 possible val-
es during Run1 (Fig. 4(1)). A total of 12 site-runs (out of 198
ite-runs or 6 percent of the total) had generated correlation

oefficient outliers. These site-runs were:

Run1: Meseta, Pacifica3, Bonita, Gallo Pinto, and Magsassy.
Run2: Meseta, Pacifica3, and Bonita.
oefficients across sites and model runs.

Run3: Pacifica1, Nubosa, and Osa3.
Run4: Osa3.

According to Poeter and Hill (1998), a correlation coefficient
larger than 0.90 suggests that the parameters are correlated,
and hence the values of parameters would be highly uncertain.
No single pair of parameters was consistently correlated (i.e.,
correlation coefficient >0.90 for all sites and all runs). Just a few
sites had correlation coefficients higher than 0.90. Correlation
coefficient outliers might indicate that the model was difficult
when applied to some sites in tropical wet and tropical dry life
zones.

3.4. Parameter uncertainty

Fig. 5 shows the optimized parameter values and their corre-
sponding 95% linear confidence intervals. Results suggested
that the confidence intervals of DEC11 (Fig. 5A1–A4) and
DECW1 (Fig. 5F1–F3) were consistently wider than other
parameters’ across all the model runs and all the sites. The
confidence intervals of PRDX4 varied among model runs
(Fig. 5D1–D9) with the smallest intervals for runs with 2–4
optimized parameters (Run3, Run4, Run6, and Run9), interme-
diate intervals for runs with 5 optimized parameters (Run1 and

Run2), and wider intervals for runs with only one optimized
parameters (Run5, Run7, and Run8).

Large confidence intervals of DEC11 and DECW1 agreed
with the observations from parameter sensitivities that these
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eter
Fig. 5 – Param

two parameters were relatively insensitive because limited
information was contained in the observations about these
two parameters. This suggests that both over- and under-
fitting are likely to increase the uncertainty of parameter
values for a given set of observations. All other parameters
were well resolved as suggested by their small confidence
intervals. In general, DEC4 is better resolved than any other
parameters.

3.5. Goodness of model fit across sites

Detailed comparisons between simulated and observed val-
ues, along with the results of significance test on their
difference (indicated by the background), for all 9 model runs
across the 39 sites are presented in Fig. 6. It shows the follow-

ing results:

1. A total of 50 (out of 81) comparisons showed that the simu-
lated values were significantly different from observations.
uncertainty.

2. The simulated LITTERN and WOODN were significantly
lower than observations, which was consistent across all
model runs.

3. All simulations were significantly different from their cor-
responding observations for all the variables in Run7 and
Run8.

4. Except Run1 and Run2, no relationship existed between
the simulated and MODIS NPP values. MODIS NPP values
were compressed to a narrow range as compared with the
simulated values.

5. The number of matches between simulated and observed
values increased with the increasing number of adjustable
parameters.

6. Among all nine variables, simulated ABGC, SOMTC, and
SOMTN values agreed with observed values in more model
runs than other variables.
7. CENTURY model was more robust in simulating C dynam-
ics that N dynamics. CENTURY completely failed the
simulation of LITTERN and WOODN, although the cor-
responding simulation of LITTERC and WOODC were
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Fig. 6 – Goodness of model fit as demonstrated by the comparison between simulated and measured values for the 9 model
runs across 33 sites. A successful model fit (white background) indicates that (1) the model explained a significant portion of
the variability of field observations, (2) the slope of the linear regression between observed and simulated values was not
significantly different from 1.0, and (3) the intercept of the linear regression was not significantly different from 0. Failing
a l fit (
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dec4 = −0.01023 + 0.045 dec5

dec5 (committee model):
ny of these significance test criteria suggests a failed mode

successful in some runs. The simulation of ABGC was also
better than that of ABGN.

.6. Parameter modeling

ot surprisingly, the best Cubist parameter models, indicated
y the best correlation coefficients and the lowest relative
rrors, were produced when all the site and parameter vari-
bles were possible independent variables. However, these
ere not the best practical set of models since all of the param-

ters depended on one or more of the other parameters to
e derived. Because the goal was to be able to derive all of
he parameters from known data, models using only site fac-
ors (e.g., temperature and precipitation) had to be used for
ome parameters. Highest correlation coefficients and lowest
elative errors were not sufficient to select models, and prece-
ence in the prediction of parameters has to be considered
imultaneously. The precedence of the six variables is shown
n Fig. 7 and Table 5. From Fig. 7, it can be seen that because

ec11 depended on dec4 that depended on dec5, it is neces-
ary to estimate dec5 first. This suggests that they have the
ollowing precedence: dec5, dec4, and dec11. The predictive

odels for dec4 and dec5 were as follows:
grey background).

dec4:
Fig. 7 – Dependence and precedence for generating
parameter fields.
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Table 5 – Model type, precedence, correlation coefficient, and relative error for each of the regression tree models

Target variable Best practical Cubist model Precedence Correlation coefficient Relative error

dec5 Committee model 1 0.83 0.58
dec4 Committee model 2 0.98 0.13
decw1 Single rule model 1 0.95 0.41

decw2 Single rule model
prdx4 Single rule model
dec11 Committee model

Model 1:

dec5 = 2.574 − 0.107 tmin − 0.000266 elevation

Model 2:

dec5 = −0.132 + 0.000185 precipitiaton

Model 3:
Rule 1: If lifezone is T-df, P-wf, T-mf, P-rf

dec5 = 0.555 − 0.067 tmin + 0.036 tmax

Rule 2: If lifezone is T-wf, LM-rf

dec5 = 0.987 − 0.09 tmin − 0.048 tmax

Model 4:

dec5 = 3.529 − 0.152 tmin − 0.00048 elevation

Model 5:
Rule 1: If lifezone is T-df, P-wf, T-mf, P-rf

dec5 = −0.75 + 0.000147 prec + 0.033 tmin

Rule 2: If lifezone is T-wf, LM-rf

dec5 = 0.741

Model 6:

dec5 = 3.586 − 0.158 tmin − 0.000397 elevation

Model 7:
If lifezone is T-df, P-wf, P-rf

dec5 = 0.215

If lifezone is T-wf, LM-rf, T-mf

dec5 = 0.544 − 0.191 tmean + 0.161 tmax

The units of the independent variables were: precipitation
in mm y−1, tmean, tmin and tmax in ◦C, and elevation in m above
sea level.

4. Discussion

The agreement between simulated and observed values
increased with the increasing number of adjustable param-
eters n. This is consistent with the general trend that a perfect
fit can always be reached by increasing n as a result of over-
fitting. In this study, the maximum n used was 5 (i.e., Run1

and Run2), resulting in the highest agreement between sim-
ulated and observed values. Although the fitting of LITTERN
and WOODN was unsuccessful in these two runs, simulated
values of other variables matched very closely with observa-
2 1.00 0.00
1 0.84 0.47
3 0.68 0.77

tions. We believe that n with a value of 5 has already resulted
in over-fitting some observations, notably MODIS NPP (Fig. 6).
Most of the simulated NPP values in Run3 through Run9 varied
from 500 to 2000 g C m−2 y−1, comparable with field observa-
tions in the tropics (Clark et al., 2001). In contrast, MODIS
NPP values were compressed around 700–1100 g C m−2 y−1.
The over-fitting of NPP in Run1 and Run2 does not mean
all the observations had been over-fitted. In fact, LITTERN
and WOODN were still poorly fitted. The coexistence of over-
and under-fitting in Run1 and Run2 might be caused by the
deficiency of the CENTURY model, failure to include sensi-
tive parameters related to LITTERN and WOODN, or incorrect
weights assigned to the observations.

Under-fitting can happen if there are not enough adjustable
parameters as demonstrated by Run5, Run7, and Run8. These
runs suggest that adjusting PRDX4 and its tied parameters was
not enough to take advantage of the information contained in
the observations. The failure of tying decomposition coeffi-
cients (e.g., DEC11, DEC4, and DEC5) to PRDX4 to explain the
variances in observations also suggested that the spatial vari-
ations of DEC11, DEC4, and DEC5 were not well coupled with
production. Furthermore, Run5 indicated that these decompo-
sition coefficients, treated as constants in fix.100 of CENTURY,
should not be treated as invariants.

CENTURY successfully simulated ABGC, SOMTC, and
SOMTN, when the number of adjustable parameters was
larger than 1. This is very encouraging because the main
focus of this research is to investigate the capability of CEN-
TURY model in simulating ABGC and SOMTC by adjusting
model parameters. CENTURY simulates SOMTC better than
any other N pools which might reflect the fact that the model
was originally developed for agricultural systems with a spe-
cial emphasis on the characterization of soil biogeochemical
processes. The better performance of the model on ABGC,
SOMTC, and SOMTN was consistent with the high observa-
tion sensitivities of these variables (Fig. 3). This suggests that
these observations not only contribute more information to
the parameter estimation process, but they can be better pre-
dicted as well.

Our results showed that the values of 2–4 parameters
could be successfully resolved with the available informa-
tion. Under-fitting could be resulted from only one adjustable
parameter, which led to a failure of comparison between simu-
lated and observed values. Adjusting more than four variables
could result in over-fitting at least partially. At the same time,
the mismatches between the observed and simulated nitro-

gen stocks (i.e., LITTERN and WOODN) suggest that we might
have ignored some parameters controlling nitrogen dynamics
in the model. The values of one or two of such parame-
ters might be resolvable. Some observations including MODIS
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Fig. 8 – Comparison of NPP inferred from model inversion
(Run3) with estimates from field measurements. Low and
e c o l o g i c a l m o d e l l i n

PP and LITTERNN contained little information that helps to
esolve parameter values. However, this information did pro-
ide evidence of over-fitting once the number of adjustable
arameters exceeded 5.

Almost a perfect match of ABGC is worrisome because field
easurements are snapshots which might well be different

rom the long-term averages. Higher temporal variability of
BGC might partially explain why the sensitivities of SOMTC
nd SOMTN were comparable or higher than that of ABGC,
r in other words, the information content of SOMTC and
OMTN was equivalent or higher than that of ABGC. SOMTC
nd SOMTN pools are more stable than ABGC pools. Therefore,
hey might contain more information about the steady state
onditions than the more variable ABGC.

Weights are necessary when different kinds of observa-
ions are used in the cost function. Various methods have
een used to assign weights to observations, including the

nversion of standard deviation (ISD) (Poeter and Hill, 1998),
he inverse of the mean observation value (IMO) (Poeter and
ill, 1998), or expert knowledge. All these methods have their
dvantages and drawbacks. The first two methods are objec-
ive and can be quantified. However, both of them might not
eflect the quality and importance of observations at the same
ime. For example, the high sporadic temporal variation (at
he decadal scale) of coarse woody debris (CWD) on a given
orest site dictated that a relative low weight should be placed
n the one-time measurement of CWD in the parameter opti-

ization process. The ISD method will likely reflect the low
onfidence in this kind of sparse CWD measurements cor-
ectly, while the IMO will not. However, the ISD method will not
eflect the increase of confidence in data quality as the num-
er of CWD measurements increases. The IMO simply assigns
eights according to the magnitude of the observation, which

mplicitly assumes that the quality of the various kinds of
bservations is the same. In reality, this assumption might not
e met all the time. For example, in this study, the magnitude
f CWD (i.e., WOODC) was similar to that of soil organic carbon

n the top 20-cm soil layer (i.e., SOMTC) at some sites. Assign-
ng equal weights to these observations would be unjustifiable
ecause the temporal variability of SOMTC for a given site is
uch smaller than that of WOODC, which suggests a larger
eight should be assigned to SOMTC to reflect that it more

ikely represents the long-term steady state SOMTC condi-
ions. Another factor that the IMO and ISD methods do not
eflect well is the relative importance of different observations
or a given application. In practice, higher importance usually
alls for a larger weight. We believe that the importance of total
boveground biomass carbon (i.e., ABGC) is much higher than
he importance of litter (i.e., LITTERC) given that our overall
bjective is to assess the capability of the model in simulating
otal carbon at the ecosystem level. However, if the purpose
ere to evaluate the overall performance of the model in simu-

ating various processes and entities, assigning weights using
he ISD and IMO methods would be appropriate.

Fig. 8 shows the comparison between the NPP values
nversed from Run3 (Runs 3–6 and 9 had similar results) with

hose derived from field measurements in the tropics along
recipitation and temperature gradients. Our inverse val-
es seem demonstrated some interesting patterns that were
ifferent from field observations. For example, higher temper-
high NPP estimates were from Clark et al. (2001).

ature usually is associated with lower precipitation (i.e., the
dry tropical forest life zone), resulting lower NPP. Meanwhile,
NPP was around its maximum with a mean annual temper-
ature of 20 ◦C and annual precipitation of 3500–4000 mm. In
contrast, the NPP values derived from field measurements as
shown in Clark et al. (2001) indicated that the NPP values were
the lowest when annual temperature was around 20 ◦C. Bio-
logically, this is possible if these sites had water limitations.
However, the NPP values derived from field measurements by
no means captured the entire spectrum of possible NPP val-
ues along the precipitation and temperature gradients, which
is indicated by the NPP values inversed from this study. When
plant growth is not limited by precipitation or other factors,
NPP values should not be the lowest around 20 ◦C because
this temperature is close to the optimal temperature for plant
growth. Although the model inversion technique can be used
to possibly advance our understanding of NPP, the NPP results
and their relationships with precipitation and temperature
presented in this paper deserve more studies in the future.

This study demonstrates that some model parameter val-
ues can be resolved, and the key carbon flux NPP at the
ecosystem level can be inferred from C and N stock measure-
ments using nonlinear model inversion. To our knowledge, C
and N stock measurements have not been utilized in this con-
text before. The results of this study have several important

implications. First, this method might be very useful to derive
model parameter and NPP values from C stock measurements
from mature forests in the world that have already been
acquired by national to regional forest inventory systems. Sec-
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ond, because of the difficulties involved in the estimation of
NPP using observational approaches (Clark et al., 2001) and
its importance in the carbon cycle, the ability of inferring
NPP values from C stock measurements in mature forests can
contribute significantly to our understanding of the global to
regional carbon cycle. The NPP databases generated using this
approach can be used to improve the calibration and valida-
tion of NPP algorithms, and therefore potentially enhance our
capability and accuracy of predicting NPP using remote sens-
ing technologies. Third, the optimized parameter values can
be analyzed to develop predictive relationships with site con-
ditions such as precipitation and temperature as well as other
parameters (i.e., correlation). Parameter surfaces can then be
generated from these predictive relationships to support the
deployment of the model in space.

Although the proposed approach takes a model at face
value and parametric evaluations are limited to model (CEN-
TURY) formulation, it is capable of detecting deficiencies in
model formulations. For example, a good formulation should
render the model parameters independent of climate. How-
ever, this study shows that some of the CENTURY parameters
depend on climate, suggesting more work should be done to
reformulate that part of the CENTURY model. Another weak
component of the CENTURY model (and many others like it)
is that many of the parameters are fundamentally correlated
with one another. The approach reveals the degree of para-
metric inter-connectedness. While attempts can be made with
rules to overcome some of this problem, ultimate solutions
would be to modify the original model formulation and related
assumptions according to the new understanding.

5. Summary

Traditionally, only carbon fluxes have been used to infer model
parameter values using nonlinear inversion or data assimila-
tion techniques. In this study, we successfully inferred model
parameter values using field observations of C and N stocks
collected from tropical mature forests with the assumption
that C and N stocks in these forests have reached equilibrium
conditions. Results clearly indicated that these measurements
can resolve a certain number of model parameters without
under- or over-fitting. That the information contents varied
among field measurements can be used to prioritize the field
sampling strategies to maximize the total information return
from field campaign.

The inversed values of model parameters can be fur-
ther analyzed, and predictive models of these parameters
can be developed to facilitate the spatial deployment of
plot-scale models in regional model simulations. However,
inter-dependency among parameters needs to be addressed
using precedence rules. Developing parameter fields will likely
play an increasing role in landscape to global model simula-
tions.

Inversed NPP values from this study revealed that previous
NPP estimates derived from field measurements in the tropics

might not represent the whole of spatial variability of NPP, as
indicated by the different NPP patterns along the precipitation
and temperature gradients. Although the NPP values inversed
from this study make biological sense, a more objective ver-
2 1 9 ( 2 0 0 8 ) 327–341

ification with NPP derived from field measurements should
be conducted in the future. If the verification is successful,
NPP values could be inferred from many mature forests in
the world that are monitored by national to regional forest
inventory systems.
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